

saturated nitriles) even without optimization of reaction conditions. The gentleness of the method is illustrated both by the sensitive nature of the systems that can be formed, as well as its compatibility with various functionality. Several of the compounds formed using geranyl bromide and citronellyl iodide have interest as juvenile hormone mimics.¹³

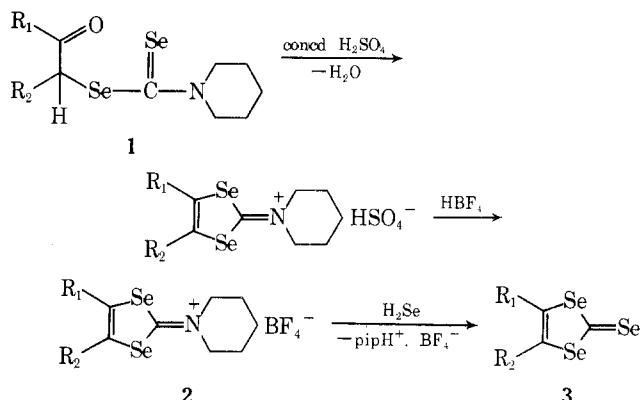
Acknowledgment. We wish to thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our work. A.B. thanks the Science Research Council of the U.K. for a fellowship. We also thank Dr. H. Gswend for informing us of his independent work on the alkylative elimination of phenylthioacetonitrile with benzylic halides.

References and Notes

- (1) For earlier work on sulfoxide eliminations, see N. Grabowsky, *Justus Liebigs Ann. Chem.*, **175**, 348 (1875); C. A. Kingsbury and D. J. Cram, *J. Am. Chem. Soc.*, **82**, 1810 (1960); C. Walling and L. Ballyky, *J. Org. Chem.*, **29**, 2699 (1964); D. N. Jones and M. A. Saeed, *Proc. Chem. Soc. London*, 81 (1964); S. I. Goldberg and M. S. Sahli, *J. Org. Chem.*, **32**, 2059 (1967); D. W. Emerson and T. J. Korniski, *ibid.*, **34**, 4115 (1969); D. N. Jones, E. Helmy, and A. C. F. Edmonds, *J. Chem. Soc. C*, 833 (1970); T. Colclough and J. I. Cunneen, *Chem. Ind. (London)*, 626 (1960); A. Deljac, Z. Stefanac, and K. Balenovic, *Tetrahedron, Suppl. No. 8* (1), 33 (1966).
- (2) B. M. Trost and T. N. Salzmann, *J. Am. Chem. Soc.*, **95**, 6840 (1973).
- (3) B. M. Trost and T. N. Salzmann, *J. Org. Chem.*, **40**, 148 (1975).
- (4) B. M. Trost, W. P. Conway, P. E. Strege, and T. J. Dietsche, *J. Am. Chem. Soc.*, **96**, 7165 (1974).
- (5) R. L. Shiner, H. C. Strock, and W. J. Jorison, *J. Am. Chem. Soc.*, **52**, 2060 (1930).
- (6) K. Ogara and G. Tsuchihashi, *Bull. Chem. Soc. Jpn.*, **45**, 2203 (1972).
- (7) F. T. Bruderlein, U.S. Patent 3,334,137; *Chem. Abstr.*, **68**, 59328v (1968).
- (8) For alkylation of sulfinyl stabilized anions, see P. G. Gassman and G. D. Richmond, *J. Org. Chem.*, **31**, 2355 (1966); T. Durst, R. Vlau, and M. R. McClory, *J. Am. Chem. Soc.*, **93**, 3077 (1971); K. Nishihata and M. Nishio, *Chem. Commun.*, 958 (1971); K. Nishihata and M. Nishio, *J. Chem. Soc., Perkin Trans. 2*, 1730 (1972); S. Bory, R. Lett, B. Moreau, and A. Marquet, *Tetrahedron Lett.*, 4921 (1972); R. Vlau and T. Durst, *J. Am. Chem. Soc.*, **95**, 1346 (1973); S. Bory and A. Marquet, *Tetrahedron Lett.*, 4155 (1973); T. Durst and M. Mohn, *ibid.*, 63 (1975).
- (9) J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, *Tetrahedron Lett.*, 3267, 3271, 3275 (1973).
- (10) Similar problems were encountered with anions of nitriles. See D. S. Watt, *Tetrahedron Lett.*, 707 (1974).
- (11) For various thiophiles, see D. A. Evans and G. C. Andrews, *Acc. Chem. Res.*, **7**, 147 (1974). For use of an arylthiol as a sulfenic acid trap, see K. Iwai, M. Kawai, H. Kosugi, and H. Uda, *Chem. Lett.*, 385 (1974), *Japanese Transl.*
- (12) Cf. D. N. Brattesani and C. H. Heathcock, *Tetrahedron Lett.*, 2279 (1974).
- (13) For a review see M. Jacobson et al. in "Insect Juvenile Hormones", J. J. Menn and M. Beroza, Ed., Academic Press, New York, N.Y., 1972, pp 249-302, and F. M. Pallos and J. J. Menn, pp 303-316.
- (14) Camille and Henry Dreyfus Teacher Scholar Grant Recipient, 1970-1975.

Department of Chemistry
University of Wisconsin
Madison, Wisconsin 53706

Barry M. Trost*¹⁴
Alex J. Bridges

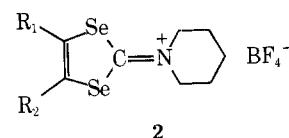

Received March 31, 1975

A Safe Preparation of Mono- and Disubstituted 1,3-Diselenole-2-selones

Summary: The preparation of 2-(*N,N*-pentamethylenimino)-1,3-diselenonium fluoroborate as nonhazardous intermediates in the synthesis of 1,3-diselenole-2-selones and tetraselenafulvalenes is described.

Sir: 1,3-Diselenole-2-selones¹⁻⁴ have recently gained in interest as intermediates in the synthesis of certain tetraselenafulvalenes, which form highly conducting organic solids with 7,7',8,8'-tetracyanoquinodimethane.^{2,3,5,6} Two different synthetic routes to 1,3-diselenole-2-selones have been

Scheme I



reported. The first^{2,4} involves the reaction of selenium and carbon diselenide with sodium acetylides leading to unsubstituted or monosubstituted selones. In the second^{1,3} mono- and disubstituted 1,3-diselenole-2-selones are obtained by passing hydrogen selenide through a methanolic solution of 2-(*N,N*-pentamethylenimino)-1,3-diselenonium perchlorates. These salts do, however, detonate upon ignition, heating, and shock and, although we have not so far observed any spontaneous detonations as reported for related systems,⁷ their handling in larger quantities constitutes a potential hazard. In spite of this, the use of perchlorates as intermediates was justified by their ready isolation in high yield and purity.

Previous attempts to prepare the fluoroborates (2) by treating the hydrosulfates, obtained by ring closure of 2-oxoalkyl piperidinodiselenocarbamates (1),^{1,3} in concentrated H₂SO₄ with an excess of an ethanolic solution of 48% aqueous HBF₄ resulted in a rather poor yield of a deliquescent product.⁸

We have now found that addition of the reaction mixture containing the hydrosulfate to a stirred ethanolic solution containing a 2-3-fold molar excess of HBF₄, prepared from an ethereal solution of HBF₄ (54%, Merck-Schuchardt, Munich), gives well-defined, nonhygroscopic fluoroborates in excellent yields (Table I). This procedure makes the corresponding selones available in large quantities without the safety hazards of the earlier procedure.

Table I
2-(*N,N*-Pentamethylenimino)-1,3-diselenonium Tetrafluoroborates

R ₁	R ₂	Yield, % ^a	Mp, °C
CH ₃	H	90 ^b	111-112
CH ₃	CH ₃	91	178-179
Ph	H	93	176-177
	-CH ₂ CH ₂ CH ₂ -	89	210-212 dec

^a Satisfactory analytical data (±0.3% for C, H, N) were obtained for all compounds listed in the table. ^b A crystalline product was obtained by addition of ether until turbidity, followed by storage overnight at -30°.

In the general procedure, 0.05 mol of the 2-oxoalkyl piperidinodiselenocarbamate (1)^{1,3} (Scheme I) was dissolved slowly in 50 g of concentrated H₂SO₄ over 1 hr. Enough ethyl acetate to cause starting precipitation of the hydrosulfate was added cautiously to the now cooled reaction mixture, which was then filtered through a

coarse glass filter funnel into a vigorously stirred, cooled solution of 0.15 mol of HBF_4 (54% in ether) in 500 ml of absolute ethanol. The fluoroborate 2 was precipitated by addition of dry ether, filtered off, washed with dry ether, and dried in vacuo. If necessary the product may be purified by dissolving it in a minimum amount of methanol, filtering, and reprecipitating with dry ether.

The fluoroborates were converted to the corresponding selones 3 by a procedure identical with that earlier reported for the perchlorates.^{1,3} This step is facilitated by the fact that the fluoroborates are more readily soluble in methanol than are the perchlorates.

Melting points are uncorrected. Elemental analyses were performed by Mr. Preben Hansen, Department of General and Organic Chemistry.

References and Notes

- (1) K. Bechgaard, D. O. Cowan, A. N. Bloch, and L. Henriksen, *J. Org. Chem.*, **40**, 746 (1975).
- (2) E. M. Engler and V. V. Patel, *J. Am. Chem. Soc.*, **96**, 7376 (1974).
- (3) K. Bechgaard, D. O. Cowan, A. N. Bloch, R. E. Pyle, and R. H. Banks, *J. Am. Chem. Soc.*, submitted for publication.
- (4) E. M. Engler and V. V. Patel, *J. Org. Chem.*, **40**, 387 (1975).
- (5) K. Bechgaard, D. O. Cowan, and A. N. Bloch, *J. Chem. Soc. Chem. Commun.*, 937 (1974).
- (6) A. N. Bloch, D. O. Cowan, K. Bechgaard, R. E. Pyle, R. H. Banks, and T. O. Poehler, *Phys. Rev. Lett.*, submitted for publication.
- (7) 1,3-Dithioliium perchlorate has been reported to detonate spontaneously; J. P. Ferraris and F. I. Mopsik, *Chem. Eng. News*, 3 (Sept 16, 1974). See also K. G. R. Sundelin, *ibid.*, 3 (Aug 5, 1974).
- (8) K. Bechgaard, unpublished results.

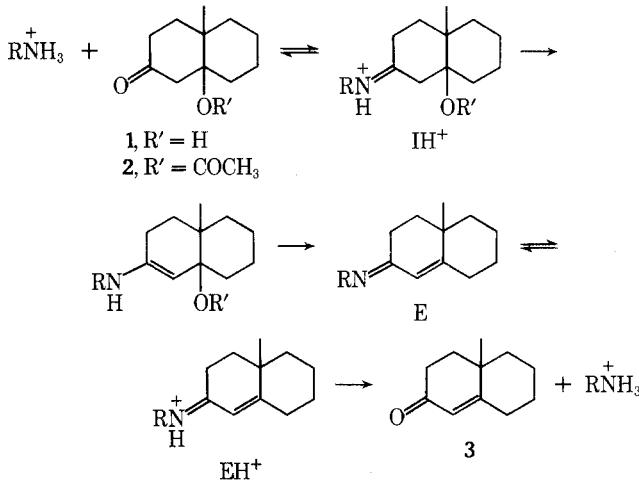
Department of Chemistry
Danish Atomic Energy Commission
Research Establishment Risø
DK-4000 Roskilde, Denmark

Department of General and
Organic Chemistry
H. C. Ørsted Institute
DK-2100 Copenhagen, Denmark

Jan R. Andersen

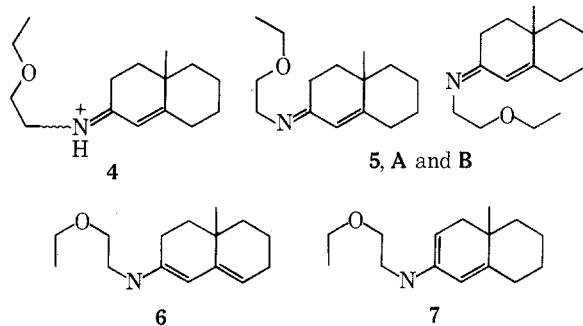
Klaus Bechgaard*

Received April 15, 1975


Detection and Characterization of Eniminium Ion Intermediates in Nucleophilic Amine Catalyzed β -Ketol Dehydration

Summary: Previously undetected chromophoric ($\lambda_{\text{max}}^{\text{H}_2\text{O}} \sim 270$ nm, $\epsilon \sim 16,000$) intermediates in nucleophilic amine catalyzed dehydration of β -ketol 1 have been detected (when a large concentration of catalyst is used), isolated, and characterized as eniminium ions (e.g., 4).

Sir: Nucleophilic amine catalysis of the conversions of β -ketol 1 and β -acetoxy ketone 2 to enone 3 in aqueous solution has been reported by us¹ to proceed without appreciable accumulation of intermediate species according to the mechanism shown in Scheme I, with α -deprotonation of iminium ion IH^+ as the rate-limiting step. We have now found that under appropriate conditions eniminium ion EH^+ is formed in significant concentrations. Since, as discussed below, this species is an intermediate in the sequence 1 \rightarrow EH^+ \rightarrow 3, its detection constitutes important corroboration that catalysis is occurring via amine-carbonyl condensation.²


Intermediate EH^+ is characterized by an ultraviolet absorption maximum at ~ 270 nm. Our failure to detect this species earlier resulted from the use of conditions (low substrate and catalyst concentrations) which tend not to lead to appreciable accumulation of EH^+ .³ Absorption at ~ 270 nm is readily detectable, however, when relatively high concentrations of reactant and catalyst (pseudo-zero-order conditions) are used at $\text{pH} \leq \text{catalyst } \text{pK}_a$. For example, an

Scheme I

aqueous solution of 1 ($5.85 \times 10^{-3} M$) and ethoxyethylamine ($\text{pK}_a = 9.44$; $0.52 M$) at $\text{pH } 8.65$ develops absorption predominantly at 270 nm through approximately the first 10% of consumption of 1.

Identification of this chromophoric species as 4 was accomplished by extraction of the reaction mixture with deuteriochloroform and determination of the mass spectrum [m/e 235.1938 (calcd for $\text{C}_{15}\text{H}_{15}\text{NO}$ 235.1936)] and the NMR spectrum of the extract. In addition to a peak at δ 5.70 in the latter due to the vinyl proton peak of 3, two peaks appeared at δ 5.92 and 6.09 (area ratio of $\sim 2:1$) which can only reasonably be assigned to the vinyl protons of the geometrical isomers 5A and 5B of the neutral enimine derived from 4.^{4,5}

If the extracted species were dienamine 6,⁶ the olefinic protons should appear at ~ 5 ppm,^{7,8} and a mixture of 5 and 6 prepared by the method of Malhotra⁹ did indeed show the expected additional resonances of equal intensity at δ 4.89 and 5.06.¹⁰ If the species were dienamine 7, it should have an NMR peak at about δ 4.25.⁷ The vinyl proton of 4 itself would be expected to appear well below 6 ppm,^{8,11} and, when DCl was added to a CD_3OD solution of the synthesized mixture of 5 and 6, peaks at δ 5.85 and 6.18 were replaced by ones at δ 6.30 and 6.55. The IR spectrum of the extract showed ν 1630 and 1615 cm^{-1} , consistent with the postulated imine structure.¹²

The fact that 4 is observed in reactions run at a pH near the pK_a of the catalyst means that this species must be at least comparable in basicity to ethoxyethylamine. This is not unreasonable. Although imines are generally believed to be $\sim 10^3$ less basic than the corresponding amines,¹³⁻¹⁶ the additional double bond in the enimine should help to stabilize its protonated form.¹⁷ Unsaturated ketones are $\sim 10^3$ more basic than saturated ketones.¹⁸

The pH-dependent equilibrium between 4 and neutral eniminium can be easily demonstrated. A chloroform solution of 5, prepared in the manner described above, was extract-